R/accuracy-gts.R
accuracy.gts.Rd
Returns a range of summary measures of the forecast accuracy. The function
measures out-of-sample forecast accuracy based on (holdout data - forecasts)
and in-sample accuracy at the bottom level when setting keep.fitted =
TRUE
in the forecast.gts
. All measures are defined and
discussed in Hyndman and Koehler (2006).
# S3 method for gts accuracy(object, test, levels, ..., f = NULL)
object | An object of class |
---|---|
test | An object of class |
levels | Return the specified level(s), when carrying out out-of-sample |
... | Extra arguments to be ignored |
f | Deprecated. Please use |
Matrix giving forecast accuracy measures.
Mean Error
Root Mean Square Error
Mean Absolute Error
Mean Absolute Percentage Error
Mean Percentage Error
Mean Absolute Scaled Error
MASE calculation is scaled using MAE of in-sample naive forecasts for non-seasonal time series, and in-sample seasonal naive forecasts for seasonal time series.
R. J. Hyndman and A. Koehler (2006), Another look at measures of forecast accuracy, International Journal of Forecasting, 22, 679-688.
Rob J Hyndman and Earo Wang
data <- window(htseg2, start = 1992, end = 2002) test <- window(htseg2, start = 2003) fcasts <- forecast(data, h = 5, method = "bu") accuracy(fcasts, test) #> Total A B A10 A20 B30 #> ME 0.5175864 0.1288857 0.3887008 0.06573302 0.06315266 0.1155213 #> RMSE 0.6067434 0.1501689 0.4582254 0.08267622 0.06873023 0.1246662 #> MAE 0.5175864 0.1288857 0.3887008 0.06984219 0.06315266 0.1155213 #> MAPE 26.8125025 4.3851653 7.8647359 2.70732415 17.45099176 8.2711056 #> MPE 26.8125025 -4.3851653 7.8647359 -2.55987709 -17.45099176 8.2711056 #> MASE 1.6332610 0.7231180 2.8031103 0.46325019 2.29893333 2.5346010 #> B40 A10A A10B A10C A20A A20B #> ME 0.2731795 0.09542307 -0.09835074 0.06866069 0.05654830 0.006604366 #> RMSE 0.3372614 0.10595132 0.10365079 0.07887357 0.06022321 0.011265235 #> MAE 0.2731795 0.09542307 0.09835074 0.06866069 0.05654830 0.008816632 #> MAPE 7.6660385 7.64346709 12.24476912 12.74890041 18.43994906 22.297766518 #> MPE 7.6660385 -7.64346709 12.24476912 -12.74890041 -18.43994906 -20.013326734 #> MASE 2.9345749 0.90325116 3.04328419 5.36231602 4.45477238 0.596663726 #> B30A B30B B30C B40A B40B #> ME 0.03933843 0.03369417 0.04248867 0.03227470 0.2409048 #> RMSE 0.04155152 0.03679464 0.04710692 0.04358476 0.3257019 #> MAE 0.03933843 0.03369417 0.04248867 0.03895166 0.2409048 #> MAPE 13.24251118 7.37361308 6.59428670 2.91406938 10.7931448 #> MPE 13.24251118 7.37361308 6.59428670 2.43285014 10.7931448 #> MASE 1.61097593 3.74724838 3.49213005 0.75045087 5.8492447 accuracy(fcasts, test, levels = 1) #> A B #> ME 0.1288857 0.3887008 #> RMSE 0.1501689 0.4582254 #> MAE 0.1288857 0.3887008 #> MAPE 4.3851653 7.8647359 #> MPE -4.3851653 7.8647359 #> MASE 0.7231180 2.8031103